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1 Introduction
Often in Galois cohomology, one needs to compute the cohomology groups of a Ẑ-module. The two most
common reasons for this are the cohomology of Galois modules over a finite field Fq, and the unramified
cohomology of a Galois module over K for a local field K.

It turns out that there exist very powerful theorems for computing these cohomology groups, varying from
explicit formulas, duality theorems, and even class field theory-like results. Unfortunately, I am not aware
of any particular source that accumulates all of these results in one place, so I have set out to change this.
These notes are a collection of results I have seen in [NSW13, Ked21, Pap00], along with some generalizations
I found by experimenting. (I make no claims that I am the first to come up with these generalizations.)

Before we begin, let us fix some notation: G we be a profinite group isomorphic to Ẑ unless stated
otherwise. It has a canonical topological generator, ϕ. A is a discrete additive Ẑ-module that will potentially
have additional hypotheses on it. For a profinite group U , Hi(U,A) denotes group cohomology of U acting
on a discrete module A, and Ĥi(U,A) denotes the Tate groups.

The outline of sections is as follows: section 2 has an explicit determination of H1(G,A) for arbitrary A,
section 3 is dedicated to the proof that |H0(G,A)| = |H1(G,A)| for finite A. Section 4 shows that cdG = 1
and scdG = 2. Section 5 discussed duality results for torsion modules, and section 6 discusses a class field
theory for G, including a duality result for Z-free modules. Some exercises are given in section 7.

2 Some Explicit Calculations
Let A be a discrete G module. Our goal for this section is to obtain a convinient explicit formulas for H1(G,A).
The upshot of this mission is that we already have a semi-useful explicit form of crossed homomorphisms
modulo principal crossed homomorphisms. With that in mind, this section will basically amount to a
determination of what these two types of objects “look like" for the case of G = Ẑ

For n ∈ N, we define a series of element Nn ∈ Z[G] by

Nn =

n−1∑
i=0

ϕi,

and we extend these to n ∈ Z by Nn−1 = Nn − ϕn. These elements should be thought of as "partial norm
elements." To make this intuition precise, consider for n ∈ N the map Z[G]→ Z[G/Gn] = Z[Cn]. There is a
true norm element of Z[Cn], and Nn is a preimage of it under this map.

Definition 1. Let A be a discrete G-module. Define NG
A by

NG
A = {a ∈ A : Nna = 0 for some n}.

We call NG
A the eventual norm kernel of A.

One can verify that if Nna = 0, then Nmna = 0 for any m ∈ Z. As a consequence, we obtain the fact
that NG

A is a Z[G]-submodule of A. With this, we can state the main result of this section, which is a
generalization of [Pap00, Thm. 1.1].
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Proposition 1. Let A be a discrete G module. Then there is a canonical isomorphism evϕ (defined later) so
that

H1(G,A) ∼= NG
A/(1− [ϕ])A

Let Z1(G,A) denote the group of crossed homomorphisms (inhomogeneous 1-cocylces) and B1(G,A)
denote the group of principal crossed homomorphisms (inhomogeneous 1-coboundaries). We recall that
elements of Z1(G,A) are functions f : G→ A that satisfy f(gh) = f(g) + gf(h), and elements of B1(G,A)
satisfy f(g) = a− ga for some a ∈ A. To prove proposition 1, we will prove the following

Lemma 1. Define evϕ : Z1(G,A) → A by evϕ(f) = f(ϕ). Then evϕ induces an isomorphism from
Z1(G,A)→ NG

A.

Proof. First we show that evϕ is injective. Suppose f ∈ ker(evϕ). Then f(ϕ) = 0, and by the definition of
crossed homomorphism we obtain f(ϕn) = 0, and by continuity we obtain f(g) = 0 for all g ∈ G.

Now we show that im(evϕ) = NG
A. First, suppose f is a cochain. By continuity, we obtain f(ϕn) = f(ϕm)

for positive integers m > n. Then, by the definition of crossed homomorphism and induction, we deduce that
f(ϕn) = Nnf(ϕ). Putting these together, we obtain

0 = f(ϕm)− f(ϕn) = (Nm −Nn)f(ϕ) = ϕnNm−nf(ϕ)

which implies Nm−nf(ϕ) = 0, so f(ϕ) ∈ NG
A. This yields im(evϕ) ⊆ NG

A.
Now we show the reverse inclusion. Let a ∈ NG

A and define fa : ⟨ϕ⟩ → A by fa(ϕ
n) = Nna, and by

computation we verify the cocycle condition on fa within its domain. We claim that fa is continuous. Since
A is discrete, there exists n ∈ N such that Gn acts trivially on a. Similarly, since a ∈ NG

A there exists m ∈ N
such that Nma = 0. A computation then shows that fa factors through ⟨ϕgcd(m,n)⟩, so it is continuous. fa
then extends canonically via continuity to a cocycle f̃a : G→ A.

Now we can proceed to the proof of Proposition 1.

Proof of Proposition 1. With Lemma 1 in mind, we need only show that B1(G,A) is mapped to (1− ϕ)A
under evϕ. Suppose evϕ(f) ∈ (1−ϕ)A. Then f(ϕ) = (1−ϕ)b for some g ∈ G. This agrees with the coboundary
f̃(g) = b− gb, when evaluated at ϕ. Since evϕ is injective, this implies f̃ = f and therefore f ∈ B1(G,A).
On the other hand, if f(g) = b− gb is a coboundary, then clearly evϕ(f) = b− ϕb ∈ (1− ϕ)A.

Using this, we obtain the

Corollary 1. If A is torsion, then H1(G,A) = A/(1− ϕ)A

Proof. Using Proposition 1, it suffices to show that NG
A = A. Let a ∈ A be m1-torsion. Since the action

of G on A is continuous, a is fixed by Gm2 for some m2 ∈ Z. This means that action of Z[G] on a factors
through the finite ring (Z/m1Z)[G/Gm2 ], so the Z[G]-submodule of A generated by a is finite. This implies
that {Nna : n ∈ Z} is a finite set, so there exist n1 < n2 ∈ Z with Nn1

a = Nn2
a, which by computation

yields Nn2−n1
a = 0.

We demonstrate these results with a nice number-theoretic application which can be found after the proof
of Theorem 1.1 in [Pap00].

Proposition 2. Let E/Fq be an Elliptic curve. Then H1(Fq, E) = 0

Proof. The map f : E(F̄q)→ E(F̄q) given by f(P ) = P − ϕP is a nonconstant algebraic map of curves. It is
therefore surjective by [Sil09, Thm. II.2.3], so E(F̄q)/(1− ϕ)E(F̄q) = 0.
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3 Euler Characteristic
For a moment, let G be an arbitrary profinite group that has finite Cohomological dimension. For a finite
G-module A with |Hi(G,A)| <∞, define the Euler characteristic

χ(G,A) =

∞∏
i=0

|Hi(G,A)|(−1)i .

Now let G = Ẑ once again, and let A be finite. In light of Theorem 1 and Corollary 1, we know that the
conditions for χ(G,A) to make sense are satisfied. In this case, we have

χ(G,A) =
H0(G,A)

H1(G,A)
.

Proposition 3. Let A be a finite G-module, then χ(G,A) = 1. Equivalently (by Theorem 1), |H0(G,A)| =
|H1(G,A)|.

Proof. Define f : A→ A for f(a) = (1−ϕ)a. Since G is procyclic, we have ker(f) = H0(G,A), and by 1 we get
coker(f) = H1(G,A). By general properties of homomorphisms of finite groups, we have |coker(f)| = |ker(f)|,
so |H0(G,A)| = |H1(G,A)|.

4 Cohomological dimension
The main goal of this section is a discussion of the cohomological dimension of G. We recall the following
definitions for cohomological dimension from [NSW13, Sec. 3.3.1]:

Definition 2. Let G be a profinite group, we say that cdG = n, if for all discrete torsion G-modules and
i > n, Hi(G,A) = 0, and n is the minimal integer with this property.

We say that scdG = n if the same conditions hold, but for all discrete G-modules, including ones that are
not necessarily torsion.

Our goal will be to prove the following theorem

Theorem 1. We have the identities cdG = 1 and scdG = 2.

There is a common misconception that the cohomology of G should be periodic with period 2, since the
cohomology of finite cyclic groups is periodic with period 2. Such a misconception is often accompanied with
the following “proof."

By standard results, we have Hn(G,A) = lim←−m
Hn(G/Gm, A) and Hn+2(G,A) = lim←−m

Hn(G/Gm, A),
with the inverse limit taken over inflation maps. Since Hn(G/Gm, A) ∼= Hn+2(G/Gm, A), it follows that
Hn(G,A) ∼= Hn+2(G,A).

The problem with this argument is that while the groups in the inverse limit are isomorphic, the inflation
maps are not the same. In particular, the following diagram (where the horizontal maps are periodicity
isomorphisms) does not commute.

Hn(G/Gnm, A) Hn+2(G/Gnm, A)

Hn(G/Gm, A) Hn+2(G/Gm, A)

∼

inf

∼

inf

The following proof is an elaboration on the one given as an example in [NSW13, Sec. 3.3].

Proof of Theorem 1. We first show cdG = 1. First, note that H1(G,Z/nZ) ∼= Z/nZ ≠ 0, so cdG ≥ 1. We
will show that if A is a finite torsion G module, H2(G,A) = 0

By [NSW13, Thm. 1.2.4], it suffices to show that all exact sequences of the form

0→ A→ Ĝ
π−→ G→ 0
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split. By surjectivity of π : Ĝ→ G, there exists a ϕ̂ ∈ Ĝ such that π(ϕ̂) = ϕ. Define a map s′ : ⟨ϕ⟩ → Ĝ by
s′(ϕn) = ϕ̂n.

We claim that s′ is continuous. First, since A is finite and G is profinite, Ĝ is profinite. We use the
following result from the general theory of profinite groups: let U ⊆ Ĝ be open, and u ∈ U . Then there exists
an m ∈ N such that u⟨Ĝm⟩ ⊆ U , where ⟨Ĝm⟩ is the subgroup of Ĝ generated by mth powers. (Exercise:
prove this.)

Now we can show that s′ is continuous: if U is an open set containing s′(ϕr), then U contains s′(ϕr)⟨Ĝm⟩
for some m, and therefore the open subset ϕr⟨ϕm⟩ ⊆ ⟨ϕ⟩ is contained in U , which means that s′ is continuous.

Since s′ is continuous, it extends to a continuous homomorphism s : G→ Ĝ. Since π ◦ s is the identity
when restricted to the dense subset ⟨ϕ⟩, it is the identity on all of G and therefore the exact sequence splits.

We now know that H2(G,A) = 0 when A is finite. Working one prime at a time and using the fact that
all simple G modules are finite, we obtain cdG < 2 by [NSW13, Prop. 3.3.2]. This implies cdG = 2.

Now, by [NSW13, Prop. 3.3.3], we have scdG ≤ cdG+ 1 = 2. Since H2(G,Z) ∼= H1(G,Q/Z) ∼= Q/Z, we
have scdG ≥ 2, so these together imply scdG = 2. (Alternatively, one can use [NSW13, Sec. 3.3 Ex. 1])

5 Duality for Torsion Modules
Like the absolute Galois groups of local fields, the group G admits a duality theory that makes its cohomology
especially nice. First we fix some notation, for an Abelian group or G-module A, write A∗ = homZ(A,Q/Z).
To establish this duality theory, we will need to define the following Dualizing modules (See [NSW13, Def.
2.5.1]).

Di(A) = lim−→
cor∗

Hi(U,A)∗

where the inverse limit is taken over open subgroups of G. We will abuse notation and write Di(Ẑ) for
lim−→Di(Z/mZ).

Lemma 2. For all m ∈ Z
D0(Z/mZ) = 0.

In our case, the open subgroups of G are precisely Gn for n ∈ N.

Proof. We have the identies H0(Gn,Z/mZ)∗ = Z/mZ. Since cor is the norm map in H0, we have that
cor : H0(Gnn′

,Z/mZ)→ H0(Gn,Z/mZ) is given by mutliplication by n′, and therefore its dual cor∗ is also
given by multiplication by n′. Computing the direct limit from this information we obtain D0(Z/mZ) = 0
because every element is 0 far enough down the direct system.

Lemma 3. For all m ∈ Z, we have
D1(Z/mZ) = Z/mZ,

moreover, D1(Ẑ) = Q/Z.

Proof. In this case, we once again have the identities H1(Gn,Z/mZ) = hom(Gn,Z/mZ) = Z/mZ, so therefore
H1(Gn,Z/mZ)∗ = Z/mZ, however in this case it will turn out that cor∗ is the identity.

To show this, note that res : H1(Gn,Z/mZ)→ H1(Gnn′
,Z/mZ) is given by multiplication by n′. This

is because, using the identification H1 = hom, restriction is literally restricting the domain. Since every
element of Gnn′

is simply the n′th power of something in Gn, this makes res just the multiplication by n′
map. Standard results tell us cor ◦ res is given by multiplication by n′, so this implies cor is the identity, and
therefore cor∗ is the identity. This yields D1(Z/mZ) = Z/mZ.

To obtain D1(Ẑ) = Q/Z, we use the fact that the map H1(Gn,Z/(mm′)Z)→ H1(Gn,Z/mZ) is given by
projection, so its dual is given by the inclusion Z/mZ→ m′Z/mm′Z. Passing to the direct limit, the maps
D1(Z/mZ) = Z/mZ→ Z/mm′Z = D1(Z/mm′Z) is given by inclusion, so the direct limit D1(Ẑ) is Q/Z.

With these results, we have the following duality theorem
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Theorem 2. Let A be a discrete torsion G-module. Then the cup product induces a perfect pairing

∪ : H0(G,A)×H1(G,A∗)→ H1(G,Q/Z) = Q/Z.

In particular, we have isomorphisms
H0(G,A)∗ ∼= H1(G,A∗).

Proof. The following facts are true:

1. cdG = 1 (Theorem 1.)

2. D0(Z/pZ) = 0 for all p (Lemma 2.)

Then by [NSW13, Thm. 3.4.6], the cup product induces a perfect pairing

∪ : Hi(G,hom(A,D1(Ẑ)))×H1−i(G,A)→ H1(G,D1(Ẑ)) = Q/Z.

Since D1(Ẑ) = Q/Z by Lemma 3, we obtain the result.

We could have actually proven the isomorphism H0(G,A)∗ ∼= H1(G,A∗) using the morphism f from the
proof of 3, however this method would not show that the isomorphism is induced by the cup product. We
leave this as an exercise.

6 Class Field Theory
Let G be an arbitrary profinite group for a moment. If scdG = 2, then we should expect G to "have a class
field theory." This is obviously a vaguely hand-wavey notion, but it can be made rigorous (see [NSW13, Th.
3.4.6]). As we have shown this property for G = Ẑ in Theorem 1, we should expect this property for G = Ẑ.
To this end, recall the following definition of a formation module from [NSW13, Def. 3.1.8]

Definition 3. Let G be a profinite group. A formation module for G is a discrete G module C together with
a system of isomorphisms

invU/V : H2(U/V,CV )
∼−→ 1

[U : V ]
Z/Z

for every pair V ⊆ U of open subgroups with V normal in U . We further require:

1. H1(U/V,CV ) = 0

2. For open normal subgroups W ⊆ V of the open subgroup U , the following diagram commutes.

H2(U/V,CV ) H2(U/W,CW ) H2(V/W,CW )

1
[U :V ]Z/Z

1
[U :W ]Z/Z

1
[V :W ]Z/Z

inf

inv

res

inv inv

inc [U :V ]

We remark that an inverse limit argument implies that we have H1(G,C) = 0 and H2(G,C) = 1
#GZ/Z,

and we call the second isomorphism inv. The main (interesting) consenquence of the existence of a formation
module is the following duality theorem.

Theorem 3 ([NSW13] Thm. 3.1.9). Let G be a profinite group and C a formation module for G. If A is a
discrete G-module which is finitely generated and free as a Z-module. Then for all i ∈ Z, the cup product
gives a perfect pairing

∪ : Ĥi(G,hom(A,C))× Ĥ2−i(G,A)→ H2(G,C)
inv−−→ 1

#G
Z/Z

which induces a topological isomorphism

Ĥi(G,hom(A,C)) ∼= Ĥ2−i(G,A)∗.
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The groups Ĥi(G,A) for profinite G are slightly complicated, but for our sake you need only know that

Ĥ0(G,A) = lim←−
U

Ĥ0(G/U,AU ).

We now return to the case of G = Ẑ use these theorems, we must construct a formation module for G. To
this end we have the following lemma, which is based on [Ked21, Ex. 5.1.1]

Lemma 4. The module C = Z is a formation module for G.

Proof. We fix the following notation, all extending the notation established in 3. Let U = Gℓ and V = Gm.
We first verify condition (1) since

H1(U/V,CV ) = H1(mZ/ℓZ,Z) = 0.

Next we verify condition (2). We consider the exact sequence

0 Z Q Q/Z 0

Taking U/V cohomology, we see thatHi(U/V,Q) = 0 because Q is uniquely divisible, so we get an isomorphism
δ−1 : H2(U/V,Z)→ H1(U/V,Q/Z). Now,

H1(U/V,Q/Z) = hom(Gm/Gℓ,Q/Z) ∼−→ 1

[U : V ]
Z/Z.

We make a specific concrete choice for the last isomorphism, which we will call it ψ. Let f ∈ hom(Gm/Gℓ,Q/Z)
be the morphism that takes ϕm to m/ℓ, then define ψ(f) = m/ℓ. (ψ can be thought of as evaluation at ϕm.)

Verifying the commutativity of the diagram in (2) is a routine but slightly tedious calculation that we
leave an an exercise. It mainly comes down to using an explicit description of inf and res on cocycles, which
for example can be found in [NSW13, Sec. 1.5].

There is another choice for C, and that is Ẑ. This result follows from the fact that Ẑ is “Cohomologically
identical" to Z. If G is any profinite group, then for all i > 0, we have Hi(G,Z) ∼= Hi(G, Ẑ), which can be
proven using the exact sequence

0 Z Ẑ Ẑ/Z 0

and the fact that Ẑ/Z is uniquely divisible.
Using Ẑ has the upside of being a level-compact formation module, but this does not actually give us

much of an advantage, so we have chosen to stick with Z.
The existence of a formation module has many consequences, however most of them are either trivial

or already proven through other means. The one interesting result we get is a duality theorem: applying
Theorem 3 we obtain

Proposition 4. Let A be a finitely generated Z-free G module. Then the cup product induces isomorphisms

Ĥi(G,hom(A,Z)) ∼= Ĥ2−i(G,A)∗.

7 Exercises
1. Determine the periodicity isomorphism between Ĥ0(G/Gn,Z/mZ) and Ĥ2(G/Gn,Z/mZ), along with

the inflation maps, and demonstrate that the diagram on page 3 does not commute.

2. Let G be a profinite group and u ∈ U ⊆ G be an open subset. Show that there exists m ∈ N such that
u⟨Gm⟩ ⊆ U , where ⟨Gm⟩ is the subgroup of G generated by its mth powers.

3. Using Corollary 1 and the ideas in section 3, show that H0(G,A) ∼= H1(G,A∗) for torsion A without
using dualizing modules.

6



4. Verify the commuting diagram in the proof of Lemma 4.

5. Let A be finitely generated as an abelian group, Ators its torsion subgroup, and Afree = A/Ators. Prove
that H2(G,A) = H2(G,Afree) and the exact sequence

0 Ators/((1− ϕ)A ∩Ators) H1(G,A) H1(G,Afree) 0

6. Ẑ is not the only profinite group with particularly simple cohomology. In fact, it turns out that every
torsion-free procyclic group has especially nice cohomology.1 Specifically, let P ⊆ {2, 3, 5, . . .} = Pmax
be a set of rational primes. Define

ZP =
∏
p∈P

Zp,

and note that Ẑ = ZPmax . Generalize the theorems here to ZP for arbitrary P ⊆ Pmax
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