Cyclic Extensions of Fields and SO_2

Connor Lane

August 2024

1 Introduction

Let k be a characteristic field (characteristic $\neq 2$) and $C: x^2 - \alpha y^2 = 1$ with $\alpha \in k$ be an algebraic variety with distinguished point O = (1, 0). We can put a group law on C with identity O as follows. Define a symmetric bilinear form $\omega: k^2 \times k^2 \to k$ by

$$\omega\left(\binom{v_1}{v_2}, \binom{w_1}{w_2}\right) = v_1w_1 + \alpha v_2w_2$$

Let K/k be an extension of k, and define $O_2(\omega, K)$ as the set of 2×2 matrices with entries in K that preserve ω . Define $SO_2(\omega, K)$ as the kernel of det : $O_2(\omega, K) \to \{\pm 1\}$. Note that we can then view $SO_2(\omega)$ (and $O_2(\omega)$) as group varieties over k. We define a map $\varphi : C \to SO_2(\omega)$ by

$$\varphi(x,y) = \begin{pmatrix} x & \alpha y \\ y & x \end{pmatrix}$$

this map is an isomorphism of varieties and induces a group structure on C via the group structure on $SO_2(\omega)$.

Because of this isomorphism, we will use $SO_2(\omega)$ and C interchangeably. In particular, we will use C when it is convenient to have a group written additively.

We fix the following notation conventions for Galois cohomology: $H^i(K/k, A) = H^1(\text{Gal}(K/k), A)$, $H^i(k, A) = H^i(\text{Gal}(\bar{k}/k), A)$, and we use \hat{H}^i to denote Tate's augmented cohomology groups.

Finally, I will remark that more elementary (read: no group cohomology) introductions to some of these ideas can be found in a blog post on my website and in these slides I made for the Rose-Hulman undergraduate math conference.

2 The group structure of SO₂

Our first goal is to understand the group structure of $SO_2(\omega)$. To do this, we define a ring (variety) A_{ω}

$$A_{\omega}(K) = \left\{ \begin{pmatrix} x & \alpha y \\ y & x \end{pmatrix} : x, y \in K \right\}.$$

As a variety, A_{ω} is simply \mathbb{A}_k^2 , however it has a different ring structure in general. For notational convenience, we define

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad J = \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}.$$

As rings, we have a natural isomorphism

$$K[X]/(X^2 - \alpha) \simeq A_{\omega}(K) \qquad 1 \mapsto I, \quad X \mapsto J.$$

Lemma 1. When α is not a square in K, we get an isomorphism $K[\sqrt{\alpha}] \simeq A_{\omega}(K)$. When α is a square, we get an isomorphism $K \oplus K \simeq A_{\omega}(K)$

Proof. The case where α is not square follows from the definition of adjoining an element. The case where it is a square follows from Chinese remainder theorem.

This yields another intepretation of A_{ω} : it's a $k(\sqrt{\alpha})/k$ -form of $k \oplus k$. (In general, by $k(\sqrt{\alpha})/k$ -form of X we mean some object Y defined over k whose base change to $k(\sqrt{\alpha})$ is isomorphic to X.)

We have an exact sequence

$$1 \longrightarrow \mathrm{SO}_2(\omega, K) \longrightarrow A_{\omega}^{\times}(K) \xrightarrow{\mathrm{det}} K^{\times}$$

The image of the last map is precisely the subset of K^{\times} that can be written as $x^2 - \alpha y^2$ for $x, y \in K$, so in particular it is surjective when K is algebraically closed.

When α is not a square in K, we get a natural action of $\mathbb{Z}/2\mathbb{Z}$ on $A_{\omega}(K)$ induced by the action of $\operatorname{Gal}(K(\sqrt{\alpha})/K)$ on $K(\sqrt{\alpha}) \simeq A_{\omega}(K)$. We wish to generalize this action to the case where α is a square. For the group $G = (e, \sigma)$, define

$$^{\sigma}(xI + yJ) = xI - yJ.$$

We note that this agrees with the action of the Galois group when α is not square. For $M \in A_{\omega}(K)$, we have $M + {}^{\sigma}M = \text{Tr}(M)$ and $M^{\sigma}M = \det(M)$.

Lemma 2. With all notation as previously established, $H^1(G, A^{\times}_{\omega}(K)) = 1$.

Proof. When α is not a square, this is Hilbert's theorem 90 by 1 and the discussion proceeding this lemma.

Now assume α is a square. Let $f: G \to A_{\omega}^{\times}$ be a 1-cocycle, We wish to show that f is a 1-coboundary. By the definition of a cocycle, we have

$$f(e) = f(ee) = f(e)^e(f(e)) = f(e)^2$$

Since $A^{\times}_{\omega}(K)$ is a group, we obtain f(e) = I. Now

$$I = f(\sigma\sigma) = f(\sigma)^{\sigma} f(\sigma).$$

If we let $f(\sigma) = aI + bJ$, we get $I = (aI + bJ)(aI - bJ) = a^2I - \alpha b^2I$ so $a^2 - \alpha b^2 = 1$. Now define $t = f(e) + f(\sigma)$. Then for $g \in \{e, \sigma\}$

$${}^{g}t = {}^{g}f(e) + {}^{g}f(g) = f(ge)f(g)^{-1} + f(gg)f(g)^{-1} = f(g)^{-1}t$$

when $t \in A_{\omega}^{\times}$, we obtain $f(g) = {}^{g}tt^{-1}$ so f is a coboundary. Now suppose t is not a unit. Then $\det(t) = 0$ so we obtain

$$0 = \det(f(e) + f(\sigma)) = \det(I + aI + bJ) = \det((1 + a)I + bJ)$$

= $((1 + a)I + bJ)((1 + a)I - bJ) = (1 + a)^2I - \alpha b^2I = a^2I - \alpha b^2I + 2aI + I = 2aI + 2I$

therefore a = -1, which along with $a^2 - \alpha b^2 = 1$ implies b = 0.

This means we have only one possible cocycle that is not a coboundary (the one given by f(e) = I and $f(\sigma) = -I$.) However, there are at least two coboundaries. This implies that all cocycles are coboundaries and $H^1(G, A_{\omega}^{\times}) = 1$.

Now we can establish a nice description of $SO_2(\omega, k)$.

Theorem 1. We have an exact sequence

$$1 \longrightarrow K^{\times} \longrightarrow A_{\omega}^{\times}(K) \xrightarrow{[e]-[\sigma]} \mathrm{SO}_{2}(\omega, K) \longrightarrow 1$$

Proof. By periodicity and Lemma 2, we have $\hat{H}^{-1}(G, A^{\times}_{\omega}(K)) \simeq H^1(G, A^{\times}_{\omega}(K)) \simeq 1$, so the map $x \mapsto {}^e x - {}^\sigma x$ is a surjection from $A^{\times}_{\omega}(K)$ to ker(det) = SO₂(ω, K). On the other hand, the kernel of $x \mapsto {}^e x - {}^\sigma x$ is precisely $(A^{\times}_{\omega}(K))^G = IK^{\times}$.

Corollary 1. We have isomorphisms of abelian groups

$$\mathrm{SO}_2(\omega, K) \simeq \begin{cases} K(\sqrt{\alpha})^{\times}/K^{\times} & \alpha \text{ is not square} \\ K^{\times} & \alpha \text{ is square} \end{cases}$$

Proof. Combine Lemma 1 and Theorem 1.

3 The Galois Module Structure of SO₂.

Let K/k be a Galois extension of fields. We wish to describe the structure of $A_{\omega}(K)$ as a ring with a $\operatorname{Gal}(K/k)$ action.

Lemma 3. Let α be a square in k. Then the isomorphism

$$A_{\omega}(K) \simeq K \oplus K$$

commutes with the Gal(K/k) action.

Proof. The isomorphism $A_{\omega}(K) \simeq K[X]/(X^2 - \alpha)$ commutes with the Galois action, so it remains to show that the isomorphism

$$K[X]/(X^2 - \alpha) \simeq K \oplus K$$

commutes with the Galois action. More explicitly, this isomorphism is given by the maps

$$K[X]/(X^2 - \alpha) \xrightarrow{\text{proj}} K[X]/(X - \sqrt{\alpha}) \oplus K[X]/(X + \sqrt{\alpha}) \xrightarrow{\text{ev}_{\alpha}, \text{ev}_{-\alpha}} K \oplus K$$

The first map is a quotient map and trivially commutes with the Galois action. For the second pair of maps, note that for $\sigma \in \text{Gal}(K/k)$ we have $\text{ev}_{\alpha}(^{\sigma}X) = \text{ev}_{\alpha}(X) = \alpha = {}^{\sigma}\alpha$. Similarly, for $x \in K$ we have $\text{ev}_{\alpha}(^{\sigma}x) = {}^{\sigma}x$. Since X and K generate K[X], and the evaluation map commutes with the action on these elements, it must commute with the action on all of K[X].

From this, we obtain the

Corollary 2. If α is a square in k and K/k is a galois extension, $SO_2(\omega, K) \simeq K^{\times}$ as Galois modules.

Proof. By lemma 3, we obtain an isomorphism of Galois modules $A^{\times}_{\omega}(K) \simeq K^{\times} \oplus K^{\times}$. Then by theorem 1, we have an exact sequence of Galois modules

$$1 \longrightarrow K^{\times} \longrightarrow K^{\times} \oplus K^{\times} \xrightarrow{[e]-[\sigma]} \mathrm{SO}_2(\omega, K) \longrightarrow 1$$

The first map is the diagonal embedding, so $SO_2(\omega, K) \simeq K^{\times}$ as Galois modules.

Our goal is to obtain an explicit description of $H^1(k, SO_2(\omega, \bar{k}))$. For this, we need the following lemma.

Lemma 4. $H^1(k, A_{\omega}(\bar{k})) = 0.$

Proof. If α is square, this follows from 3. Otherwise, assume α is not a square. Let $K = k(\sqrt{\alpha})$, then by inflation-restriction, we have

$$0 \longrightarrow H^1(K/k, A_{\omega}^{\times}(K)) \longrightarrow H^1(k, A_{\omega}^{\times}(\bar{k})) \longrightarrow H^1(K, A_{\omega}^{\times}(\bar{K})) = 0$$

so we have isomorphisms between the first two cohomology groups. We are now reduced to computing $H^1(K/k, A_{\omega}(K))$, and to do this we want to understand the structure of $A_{\omega}(K)$ as a Gal(K/k) module.

We work with the representation $A_{\omega}(K) \simeq K[X]/(X^2 - \alpha)$. Let $aX + b \in K[X]/(X^2 - \alpha)$, and let $\sigma \in \text{Gal}(K/k)$ be the nontrivial element. Then

$$\operatorname{ev}_{\sqrt{\alpha}}(\sigma(aX+b)) = \operatorname{ev}_{\sqrt{\alpha}}(\sigma(a)X + \sigma(b)) = \sigma(a)\sqrt{\alpha} + \sigma(b) = \sigma(a)\sigma(-\sqrt{\alpha}) + \sigma(b) = \sigma(\operatorname{ev}_{-\sqrt{\alpha}})(aX+b)$$

Writing $p \in K[X]/(X^2 - \alpha)$ as (p_+, p_-) where $p_{\pm} = ev_{\pm\sqrt{\alpha}}(p)$, we have

$$\sigma(p_+, p_-) = (\sigma(p_-), \sigma(p_+))$$

This description yields an isomorphism of $\operatorname{Gal}(K/k)$ modules $A_{\omega}(K)^{\times} \simeq \operatorname{ind}_{\operatorname{Gal}(K/k)}K^{\times}$. Therefore $H^1(K, A_{\omega}(K)) = 0$. \Box

With this, we can now compute the cohomology of $SO_2(\omega, \bar{k})$. First, we introduce a

Definition 1. The set represented by ω , written rep ω , is $\{x^2 - \alpha y^2 : x, y \in k\} \cap k^{\times}$.

Theorem 2. $H^1(k, SO_2(\omega, \bar{k})) = k^{\times} / \operatorname{rep} \omega$. When α is a square in k, this group is trivial.

Proof. We have the exact sequence

$$0 \longrightarrow \mathrm{SO}_2(\omega, \bar{k}) \longrightarrow A^{\times}_{\omega}(\bar{k}) \stackrel{\mathrm{det}}{\longrightarrow} \bar{k}^{\times} \longrightarrow 0$$

Taking the long exact sequence in cohomology, we get by 3

$$A^{\times}_{\omega}(k) \xrightarrow{\det} k^{\times} \longrightarrow H^1(k, \operatorname{SO}_2(\omega, \bar{k})) \longrightarrow H^1(k, A^{\times}_{\omega}(\bar{k})) = 0$$

so $H^1(k, \operatorname{SO}_2(\omega, \bar{k})) = k^{\times} / \det(A_{\omega}^{\times}(k))$. But $\det(xI + yJ) = x^2 - \alpha y^2$ is an arbitrary element of rep ω , so we obtain the isomorphism.

When α is a square, we have $H^1(k, \operatorname{SO}_2(\omega, \bar{k})) = H^1(k, \bar{k}^{\times}) = 0$ by corollary 2 and theorem 90.

Theorem 3. Let n be an odd integer and k a field that contains the n-torsion of C. Then there is a canonical isomorphism

$$\delta: C(k)/nC(k) \simeq \hom_{cts}(G_k, C[n])$$

Proof. Consider the Kummer exact sequence on C

$$0 \longrightarrow C[n] \longrightarrow C(\bar{k}) \xrightarrow{[n]} C(\bar{k}) \longrightarrow 0$$

Taking cohomology we obtain

$$C(k) \xrightarrow{[n]} C(k) \xrightarrow{\delta} H^1(k, C[n]) \longrightarrow H^1(k, C(\bar{k})) \xrightarrow{[n]} H^1(k, C(\bar{k}))$$

Since $H^1(k, C(\bar{k})) = H^1(k, \operatorname{SO}_2(\bar{k}))$ is 2-torsion by Theorem 2, [n] is an isomorphism. This implies $H^1(k, C[n]) \to H^1(k, C(\bar{k}))$ is the zero map and therefore δ is a surjection. Exactness at C(k) yields the isomorphism.