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1 Introduction

Let k be a characteristic field (characteristic # 2) and C : 22 — ay? = 1 with a € k be an algebraic variety
with distinguished point O = (1,0). We can put a group law on C' with identity O as follows. Define a
symmetric bilinear form w : k% x k% — k by

() ()
w , = v1w1 + Qw2
V2 w2

Let K/k be an extension of k, and define Oz(w, K) as the set of 2 x 2 matrices with entries in K that preserve
w. Define SO3(w, K) as the kernel of det : Oz(w, K) — {£1}. Note that we can then view SO3(w) (and
O2(w)) as group varieties over k. We define a map ¢ : C' — SO3(w) by

T ay
p(z,y) = (y x>

this map is an isomorphism of varieties and induces a group structure on C via the group structure on
SOQ (w)

Because of this isomorphism, we will use SO3(w) and C' interchangeably. In particular, we will use C
when it is convenient to have a group written additively.

We fix the following notation conventions for Galois cohomology: H'(K/k,A) = H'(Gal(K/k), A),
Hi(k, A) = H'(Gal(k/k), A), and we use H’ to denote Tate’s augmented cohomology groups.

Finally, T will remark that more elementary (read: no group cohomology) introductions to some of these
ideas can be found in a blog post on my website and in these slides I made for the Rose-Hulman undergraduate
math conference.

2 The group structure of SO,

Our first goal is to understand the group structure of SOs(w). To do this, we define a ring (variety) A,

Au(K) = {(; Oﬁ’) :x,yeK}.

As a variety, A, is simply Ai, however it has a different ring structure in general. For notational

convenience, we define
1 0 0 «
=) =(0)

As rings, we have a natural isomorphism

K[X]/(X?—a)~A,(K) 11, X J

Lemma 1. When « is not a square in K, we get an isomorphism K[\/a] ~ A,(K). When « is a square, we
get an isomorphism K ® K ~ A, (K)
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Proof. The case where « is not square follows from the definition of adjoining an element. The case where it
is a square follows from Chinese remainder theorem. O

This yields another intepretation of A,: it’s a k(y/«)/k-form of k @ k. (In general, by k(y/a)/k-form of
X we mean some object Y defined over k whose base change to k(y/a) is isomorphic to X.)
We have an exact sequence

1 — SOy (w, K) —— AX(K) -, K

2

The image of the last map is precisely the subset of K> that can be written as 22 — ay? for x,y € K, so

in particular it is surjective when K is algebraically closed.

When « is not a square in K, we get a natural action of Z/2Z on A, (K) induced by the action of
Gal(K(y/a)/K) on K(y/a) ~ A, (K). We wish to generalize this action to the case where « is a square. For
the group G = (e, o), define

(Il +yJ)=al —ylJ.

We note that this agrees with the action of the Galois group when « is not square. For M € A, (K), we
have M +°M = Tr(M) and M° M = det(M).

Lemma 2. With all notation as previously established, H' (G, AX(K)) = 1.

Proof. When « is not a square, this is Hilbert’s theorem 90 by 1 and the discussion proceeding this lemma.
Now assume « is a square. Let f: G — AS be a 1-cocycle, We wish to show that f is a 1-coboundary.
By the definition of a cocycle, we have

fle) = flee) = f(e)*(f(e)) = f(e)?
Since A% (K) is a group, we obtain f(e) = I. Now
1= f(o0) = flo) f(o).
If we let f(o) = al +bJ, we get I = (al + bJ)(al —bJ) = a*I — ab®I so a®> — ab? = 1. Now define
t = f(e)+ f(o). Then for g € {e,c}
="f(e)+f(9) = flge)f(9)™" + fl9g)f(9) ™ = fg) ™'t

when t € A%, we obtain f(g) = 9tt~! so f is a coboundary. Now suppose ¢ is not a unit. Then det(t) = 0 so
we obtain

0 =det(f(e) + f(0)) = det({ + al + bJ) = det((1 4 a)l +bJ)
=((1+a) I +bI)((1+a)] —bJ) = (1+a)* I —ab’I = a*I — ab®I +2al + I = 2al +2I

therefore @ = —1, which along with a? — ab? = 1 implies b = 0.

This means we have only one possible cocycle that is not a coboundary (the one given by f(e) = I and
f(o) = —I.) However, there are at least two coboundaries. This implies that all cocycles are coboundaries
and H(G, AX) = 1. O

Now we can establish a nice description of SOs(w, k).

Theorem 1. We have an exact sequence

1 K* AX(K) 9 50, (w, k) —— 1

Proof. By periodicity and Lemma 2, we have H~ (G, AX(K)) ~ H'(G, A% (K)) ~ 1, so the map x — ¢z —x
is a surjection from AX(K) to ker(det) = SOz(w, K). On the other hand, the kernel of z — ¢x — 7z is
precisely (AX(K))¢ = IK*. O

Corollary 1. We have isomorphisms of abelian groups

K(ya)*/K* « is not square
KX « s square

SOQ(U},K) >~ {

Proof. Combine Lemma 1 and Theorem 1. O



3 The Galois Module Structure of SO,.

Let K/k be a Galois extension of fields. We wish to describe the structure of A, (K) as a ring with a Gal(K/k)
action.

Lemma 3. Let a be a square in k. Then the isomorphism
commutes with the Gal(K/k) action.

Proof. The isomorphism A, (K) ~ K[X]/(X? — a) commutes with the Galois action, so it remains to show

that the isomorphism
KIX]/(X?—a) 2 K & K

commutes with the Galois action. More explicitly, this isomorphism is given by the maps
K[X]/(X? - a) 2% K[X]/(X - Va) & K[X]/(X + Va) =% K o K

The first map is a quotient map and trivially commutes with the Galois action. For the second pair of
maps, note that for o € Gal(K/k) we have evy(?X) = evy(X) = a@ = . Similarly, for x € K we have
evy(“2) = %x. Since X and K generate K[X], and the evaluation map commutes with the action on these
elements, it must commute with the action on all of K[X]. O

From this, we obtain the
Corollary 2. If « is a square in k and K/k is a galois extension, SOs(w, K) ~ K* as Galois modules.

Proof. By lemma 3, we obtain an isomorphism of Galois modules A% (K) ~ K* @ K*. Then by theorem 1,
we have an exact sequence of Galois modules

1 — s K% —— k<o kK 17 50,0, k) —— 1
The first map is the diagonal embedding, so SOy (w, K) ~ K* as Galois modules. O
Our goal is to obtain an explicit description of H'(k,SOz(w,k)). For this, we need the following lemma.

Lemma 4. H'(k, A, (k)) =0.

Proof. If « is square, this follows from 3. Otherwise, assume « is not a square. Let K = k(y/a), then by
inflation-restriction, we have

0 —— HYK/k,AX(K)) — H'(k,AX(k)) —— HY(K,AX(K)) =0

so we have isomorphisms between the first two cohomology groups. We are now reduced to computing
HY(K/k, A,(K)), and to do this we want to understand the structure of A, (K) as a Gal(K/k) module.

We work with the representation A, (K) ~ K[X]/(X? —a). Let aX +b € K[X]/(X? — «a), and let
o € Gal(K/k) be the nontrivial element. Then

ev z(0(aX +0)) =ev g(0(a)X +0(b) = o(a)Va+o(b) = o(a)o(—va) + a(b) = o(ev_ sz)(aX +b)
Writing p € K[X]/(X? — a) as (p4,p—) where pi = evy /(p), we have

o(p4,p-) = (o(p-),0(p+))

This description yields an isomorphism of Gal(K/k) modules A,(K)* ~ indgax kK. Therefore
HY(K/k,A,(K)*) = 0 and therefore H!(k, A, (K)) = 0. O

With this, we can now compute the cohomology of SOs(w, k). First, we introduce a

Definition 1. The set represented by w, written repw, is {x? —ay? : x,y € k} Nk*.



Theorem 2. H'(k,SOs(w, k)) = k*/repw. When « is a square in k, this group is trivial.
Proof. We have the exact sequence
0 — SOq(w, k) — AX(k) 2% kX —— 0
Taking the long exact sequence in cohomology, we get by 3
AX (k) =2 g — 5 HY(k,SO(w, k) —— HY(k, AX(k)) =0

so H(k,SOz(w, k)) = k> / det(AX(k)). But det(xI +yJ) = x> — ay? is an arbitrary element of repw, so we
obtain the isomorphism. - -
When « is a square, we have H'(k,SOs(w, k)) = H*(k,k*) = 0 by corollary 2 and theorem 90. O

Theorem 3. Letn be an odd integer and k a field that contains the n-torsion of C. Then there is a canonical
isomorphism

§: C(k)/nC (k) ~ hom (G, Cln])

Proof. Consider the Kummer exact sequence on C

0 —— C[n] —— C(k)

Taking cohomology we obtain
C(k)y " C(k) —2 HY(k,Clnl) —— H(k, C(k)) —“5 H(k, C(k))
Since H'(k,C(k)) = H'(k,S02(k)) is 2-torsion by Theorem 2, [n] is an isomorphism. This implies

H'(k,C[n]) — H'(k,C(k)) is the zero map and therefore § is a surjection. Exactness at C(k) yields
the isomorphism. O



	Introduction
	The group structure of `3́9`42`"̇613A``45`47`"603ASO2
	The Galois Module Structure of `3́9`42`"̇613A``45`47`"603ASO2.

