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1 Introduction
Let k be a characteristic field (characteristic ̸= 2) and C : x2 − αy2 = 1 with α ∈ k be an algebraic variety
with distinguished point O = (1, 0). We can put a group law on C with identity O as follows. Define a
symmetric bilinear form ω : k2 × k2 → k by

ω

((
v1
v2

)
,

(
w1

w2

))
= v1w1 + αv2w2

Let K/k be an extension of k, and define O2(ω,K) as the set of 2× 2 matrices with entries in K that preserve
ω. Define SO2(ω,K) as the kernel of det : O2(ω,K) → {±1}. Note that we can then view SO2(ω) (and
O2(ω)) as group varieties over k. We define a map φ : C → SO2(ω) by

φ(x, y) =

(
x αy
y x

)
this map is an isomorphism of varieties and induces a group structure on C via the group structure on
SO2(ω).

Because of this isomorphism, we will use SO2(ω) and C interchangeably. In particular, we will use C
when it is convenient to have a group written additively.

We fix the following notation conventions for Galois cohomology: Hi(K/k,A) = H1(Gal(K/k), A),
Hi(k,A) = Hi(Gal(k̄/k), A), and we use Ĥi to denote Tate’s augmented cohomology groups.

Finally, I will remark that more elementary (read: no group cohomology) introductions to some of these
ideas can be found in a blog post on my website and in these slides I made for the Rose-Hulman undergraduate
math conference.

2 The group structure of SO2

Our first goal is to understand the group structure of SO2(ω). To do this, we define a ring (variety) Aω

Aω(K) =

{(
x αy
y x

)
: x, y ∈ K

}
.

As a variety, Aω is simply A2
k, however it has a different ring structure in general. For notational

convenience, we define

I =

(
1 0
0 1

)
J =

(
0 α
1 0

)
.

As rings, we have a natural isomorphism

K[X]/(X2 − α) ≃ Aω(K) 1 7→ I, X 7→ J.

Lemma 1. When α is not a square in K, we get an isomorphism K[
√
α] ≃ Aω(K). When α is a square, we

get an isomorphism K ⊕K ≃ Aω(K)

1

https://connorlane04.github.io/galois-cohomology/2024/07/31/The-Structure-of-SO2-and-Galois-Cohomology.html
https://ConnorLane04.github.io/downloads/Cyclic_Extensions.pdf


Proof. The case where α is not square follows from the definition of adjoining an element. The case where it
is a square follows from Chinese remainder theorem.

This yields another intepretation of Aω: it’s a k(
√
α)/k-form of k ⊕ k. (In general, by k(

√
α)/k-form of

X we mean some object Y defined over k whose base change to k(
√
α) is isomorphic to X.)

We have an exact sequence

1 SO2(ω,K) A×
ω (K) K×det

The image of the last map is precisely the subset of K× that can be written as x2 − αy2 for x, y ∈ K, so
in particular it is surjective when K is algebraically closed.

When α is not a square in K, we get a natural action of Z/2Z on Aω(K) induced by the action of
Gal(K(

√
α)/K) on K(

√
α) ≃ Aω(K). We wish to generalize this action to the case where α is a square. For

the group G = (e, σ), define
σ(xI + yJ) = xI − yJ.

We note that this agrees with the action of the Galois group when α is not square. For M ∈ Aω(K), we
have M + σM = Tr(M) and MσM = det(M).

Lemma 2. With all notation as previously established, H1(G,A×
ω (K)) = 1.

Proof. When α is not a square, this is Hilbert’s theorem 90 by 1 and the discussion proceeding this lemma.
Now assume α is a square. Let f : G → A×

ω be a 1-cocycle, We wish to show that f is a 1-coboundary.
By the definition of a cocycle, we have

f(e) = f(ee) = f(e)e(f(e)) = f(e)2

Since A×
ω (K) is a group, we obtain f(e) = I. Now

I = f(σσ) = f(σ)σf(σ).

If we let f(σ) = aI + bJ , we get I = (aI + bJ)(aI − bJ) = a2I − αb2I so a2 − αb2 = 1. Now define
t = f(e) + f(σ). Then for g ∈ {e, σ}

gt = gf(e) + gf(g) = f(ge)f(g)−1 + f(gg)f(g)−1 = f(g)−1t

when t ∈ A×
ω , we obtain f(g) = gtt−1 so f is a coboundary. Now suppose t is not a unit. Then det(t) = 0 so

we obtain

0 = det(f(e) + f(σ)) = det(I + aI + bJ) = det((1 + a)I + bJ)

= ((1 + a)I + bJ)((1 + a)I − bJ) = (1 + a)2I − αb2I = a2I − αb2I + 2aI + I = 2aI + 2I

therefore a = −1, which along with a2 − αb2 = 1 implies b = 0.
This means we have only one possible cocycle that is not a coboundary (the one given by f(e) = I and

f(σ) = −I.) However, there are at least two coboundaries. This implies that all cocycles are coboundaries
and H1(G,A×

ω ) = 1.

Now we can establish a nice description of SO2(ω, k).

Theorem 1. We have an exact sequence

1 K× A×
ω (K) SO2(ω,K) 1

[e]−[σ]

Proof. By periodicity and Lemma 2, we have Ĥ−1(G,A×
ω (K)) ≃ H1(G,A×

ω (K)) ≃ 1, so the map x 7→ ex−σx
is a surjection from A×

ω (K) to ker(det) = SO2(ω,K). On the other hand, the kernel of x 7→ ex − σx is
precisely (A×

ω (K))G = IK×.

Corollary 1. We have isomorphisms of abelian groups

SO2(ω,K) ≃

{
K(

√
α)×/K× α is not square

K× α is square

Proof. Combine Lemma 1 and Theorem 1.
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3 The Galois Module Structure of SO2.
Let K/k be a Galois extension of fields. We wish to describe the structure of Aω(K) as a ring with a Gal(K/k)
action.

Lemma 3. Let α be a square in k. Then the isomorphism

Aω(K) ≃ K ⊕K

commutes with the Gal(K/k) action.

Proof. The isomorphism Aω(K) ≃ K[X]/(X2 − α) commutes with the Galois action, so it remains to show
that the isomorphism

K[X]/(X2 − α) ≃ K ⊕K

commutes with the Galois action. More explicitly, this isomorphism is given by the maps

K[X]/(X2 − α)
proj−−→ K[X]/(X −

√
α)⊕K[X]/(X +

√
α)

evα,ev−α−−−−−−→ K ⊕K

The first map is a quotient map and trivially commutes with the Galois action. For the second pair of
maps, note that for σ ∈ Gal(K/k) we have evα(

σX) = evα(X) = α = σα. Similarly, for x ∈ K we have
evα(

σx) = σx. Since X and K generate K[X], and the evaluation map commutes with the action on these
elements, it must commute with the action on all of K[X].

From this, we obtain the

Corollary 2. If α is a square in k and K/k is a galois extension, SO2(ω,K) ≃ K× as Galois modules.

Proof. By lemma 3, we obtain an isomorphism of Galois modules A×
ω (K) ≃ K× ⊕K×. Then by theorem 1,

we have an exact sequence of Galois modules

1 K× K× ⊕K× SO2(ω,K) 1
[e]−[σ]

The first map is the diagonal embedding, so SO2(ω,K) ≃ K× as Galois modules.

Our goal is to obtain an explicit description of H1(k,SO2(ω, k̄)). For this, we need the following lemma.

Lemma 4. H1(k,Aω(k̄)) = 0.

Proof. If α is square, this follows from 3. Otherwise, assume α is not a square. Let K = k(
√
α), then by

inflation-restriction, we have

0 H1(K/k,A×
ω (K)) H1(k,A×

ω (k̄)) H1(K,A×
ω (K̄)) = 0

so we have isomorphisms between the first two cohomology groups. We are now reduced to computing
H1(K/k,Aω(K)), and to do this we want to understand the structure of Aω(K) as a Gal(K/k) module.

We work with the representation Aω(K) ≃ K[X]/(X2 − α). Let aX + b ∈ K[X]/(X2 − α), and let
σ ∈ Gal(K/k) be the nontrivial element. Then

ev√
α(σ(aX + b)) = ev√

α(σ(a)X + σ(b)) = σ(a)
√
α+ σ(b) = σ(a)σ(−

√
α) + σ(b) = σ(ev−

√
α)(aX + b)

Writing p ∈ K[X]/(X2 − α) as (p+, p−) where p± = ev±
√
α(p), we have

σ(p+, p−) = (σ(p−), σ(p+))

This description yields an isomorphism of Gal(K/k) modules Aω(K)× ≃ indGal(K/k)K
×. Therefore

H1(K/k,Aω(K)×) = 0 and therefore H1(k,Aω(K)) = 0.

With this, we can now compute the cohomology of SO2(ω, k̄). First, we introduce a

Definition 1. The set represented by ω, written repω, is {x2 − αy2 : x, y ∈ k} ∩ k×.
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Theorem 2. H1(k, SO2(ω, k̄)) = k×/ repω. When α is a square in k, this group is trivial.

Proof. We have the exact sequence

0 SO2(ω, k̄) A×
ω (k̄) k̄× 0det

Taking the long exact sequence in cohomology, we get by 3

A×
ω (k) k× H1(k,SO2(ω, k̄)) H1(k,A×

ω (k̄)) = 0det

so H1(k, SO2(ω, k̄)) = k×/ det(A×
ω (k)). But det(xI + yJ) = x2 − αy2 is an arbitrary element of repω, so we

obtain the isomorphism.
When α is a square, we have H1(k,SO2(ω, k̄)) = H1(k, k̄×) = 0 by corollary 2 and theorem 90.

Theorem 3. Let n be an odd integer and k a field that contains the n-torsion of C. Then there is a canonical
isomorphism

δ : C(k)/nC(k) ≃ homcts(Gk, C[n])

Proof. Consider the Kummer exact sequence on C

0 C[n] C(k̄) C(k̄) 0
[n]

Taking cohomology we obtain

C(k) C(k) H1(k,C[n]) H1(k,C(k̄)) H1(k,C(k̄))
[n] δ [n]

Since H1(k,C(k̄)) = H1(k,SO2(k̄)) is 2-torsion by Theorem 2, [n] is an isomorphism. This implies
H1(k,C[n]) → H1(k,C(k̄)) is the zero map and therefore δ is a surjection. Exactness at C(k) yields
the isomorphism.
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