Cyclic Field Extensions and Groups on Conics Rose-Hulman Undergraduate Mathematics Conference

Connor Lane

August 2, 2024

A B A A B A

Outline

- Introduction to field and Galois theory
- The group structure on a conic
- The main result

э

<ロト < 四ト < 三ト < 三ト

Fields and Field Exensions

"Definition" (field)

A field is a set K where you can reasonably talk about the operations $(+, -, \times, \div)$ and they have the properties you would expect.

• Some examples include \mathbb{R} , \mathbb{Q} , \mathbb{C} , $\mathbb{Z}/p\mathbb{Z}$

Definition (Field Extensions)

A field extension L/K is a pair of fields L, K such that $K \subseteq L$.

- Examples: \mathbb{C}/\mathbb{R} , \mathbb{R}/\mathbb{Q}
- For any field K, we can define
 K(α) = (a₀ + a₁α + ... + a_nαⁿ : a_i ∈ K).

イロト 不得下 イヨト イヨト 二日

Automorphisms and Galois Groups

Definition (Automorphism Group)

Let L be a field, then Aut(L) is the set

$$\{\sigma: L \to L | \sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta), \sigma(\alpha\beta) = \sigma(\alpha)\sigma(\beta), \sigma(1) \neq 0\}$$

Definition (Galois Group)

For an extension of fields L/K, define

$$Gal(L/K) = \{ \sigma \in Aut(L) : \sigma(k) = k \quad \forall k \in K \}$$

- Example: $Gal(\mathbb{C}/\mathbb{R}) = \{id, c\}$ where id(a + bi) = a + bi and c(a + bi) = a bi.
- Important fact: if $\sigma, \tau \in Gal(L/K)$, then $\sigma \circ \tau \in Gal(L/K)$.

4 / 21

イロト 不得 トイヨト イヨト 二日

Cyclic Extensions

Definition (Degree of an Extension)

The degree of an extension L/K is the dimension of L as a vector space over K, and is written [L:K].

- Intuitively, you should think of the degree as the relative size of L compared to K.
- Example: $[\mathbb{C} : \mathbb{R}] = 2$

Definition (Cyclic Extension)

Let L/K be an extension of fields. L/K is called cyclic if there is some $\sigma \in \text{Gal}(L/K)$ such that $\{\sigma^k\} = \text{Gal}(L/K)$, and |Gal(L/K)| = [L:K].

- Such a σ is called a generator.
- Example: \mathbb{C}/\mathbb{R} is cyclic. $\sigma = c$ satisfies the definition.

A More Complicated Example

- Define $K = \mathbb{Q}(i)$, and $L = K(\sqrt[4]{2})$.
- We have $Gal(L/K) = \{id, \sigma_1, \sigma_2, \sigma_3\}.$

$$id(a_{0} + a_{1}\sqrt[4]{2} + a_{2}\sqrt[4]{4} + a_{3}\sqrt[4]{8}) = a_{0} + a_{1}\sqrt[4]{2} + a_{2}\sqrt[4]{4} + a_{3}\sqrt[4]{8}$$

$$\sigma_{1}(a_{0} + a_{1}\sqrt[4]{2} + a_{2}\sqrt[4]{4} + a_{3}\sqrt[4]{8}) = a_{0} + ia_{1}\sqrt[4]{2} - a_{2}\sqrt[4]{4} - ia_{3}\sqrt[4]{8}$$

$$\sigma_{2}(a_{0} + a_{1}\sqrt[4]{2} + a_{2}\sqrt[4]{4} + a_{3}\sqrt[4]{8}) = a_{0} - a_{1}\sqrt[4]{2} + a_{2}\sqrt[4]{4} - a_{3}\sqrt[4]{8}$$

$$\sigma_{3}(a_{0} + a_{1}\sqrt[4]{2} + a_{2}\sqrt[4]{4} + a_{3}\sqrt[4]{8}) = a_{0} - ia_{1}\sqrt[4]{2} - a_{2}\sqrt[4]{4} + ia_{3}\sqrt[4]{8}$$

• σ_1 works as a generator: $\sigma_1^1 = \sigma_1 \ \sigma_1^2 = \sigma_2$, $\sigma_1^3 = \sigma_3$, $\sigma_1^4 = id$. • L/K is cyclic of degree 4.

イロト 不得 トイヨト イヨト 二日

Kummer Theory

• My work is primarily inspired by Kummer theory

Definition (Contains all *n*th roots of unity)

Let K be a field. K is said to contain all *n*th roots of unity if it contains n solutions to the polynomial $x^n - 1$.

Theorem (Kummer, 1840s)

Let K be a field that contains all nth roots of unity. Then all degree n cyclic extensions of K are given by

 $K(\sqrt[n]{\alpha})/K$

where $\alpha \in K$.

イロト 不得 トイヨト イヨト

Points on a Curve

- An algebraic curve is two-variable polynomial equation of the form
 C: p(x, y) = 0
- Example: $C: x^2 y = 0$, is an algebraic curve.

Definition (K points)

For a field K and algebraic curve C : p(x, y) = 0, we write

$$C(K) := \{ (x_0, y_0) \in K^2 : p(x_0, y_0) = 0 \}$$

The set C(K) is called the K points of C.

• We will primarily be interested in the curve $C : \alpha x^2 + \beta y^2 - 1 = 0$

Example: The Circle

- When $K = \mathbb{R}$, we can visualize that K points of C via its graph.
- Example: $C: x^2 + y^2 1 = 0$ has the following \mathbb{R} points.

イロト イヨト イヨト

Adding points on a Circle

• There is a notion of "adding" points on a circle.

Adding Points on a Circle: Another Way (1)

• The notion of "angle" is too specific to $\mathbb{R},$ so we want to find an alternative method of adding points

11/21

Adding Points on a Circle: Another Way (2)

Connor Lane

12 / 21

Adding Points on a Circle: Another Way (3)

Connor Lane

August 2, 2024 13 / 21

Why use lines?

- The advantage of lines is that they are more general.
- "The line between two points" is completely algebraic: it's the unique algebraic curve l : ax + by + c = 0 such that P, Q ∈ l(K).
- "Parallel lines" is just that $\ell : ax + by + c = 0$ and $\ell' : a'x + b'y + c' = 0$ obey $\frac{a}{b} = \frac{a'}{b'}$
- "The other intersection" is guarenteed to be well-defined by **Bézout's Theorem** from Algebraic Geometry
- Most remarkably: This generalizes to arbitrary curves $C: \alpha x^2 + \beta y^2 1 = 0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Adding points on a hyperbola

If we are on $C: x^2 - y^2 - 1 = 0$, the same process allows us to add points.

Some notation

• Let K be a field and $C : \alpha x^2 + \beta y^2 - 1 = 0$ be a conic with distinguished point O.

Definition For $P \in C(K)$ and $n \in \mathbb{N}$, define $nP := \underbrace{P + \dots + P}_{n \text{ times}}$

• We will need the following technical condition.

Definition (*n*-torsion of C(K)) $C(K)[n] := \{P \in C(K) : nP = 0\}$ We say C(K) has all *n*-torsion if |C(K)[n]| = n.

August 2, 2024

16/21

Connor Lane

The Main Theorem

Let:

- K be a field with $char(K) \neq 2$
- $n \in \mathbb{N}$ an *odd* integer with $\operatorname{char}(K) \nmid n$
- $C: \alpha x^2 + \beta y^2 1 = 0$ a curve with distinguished point $O \in C(K)$
- C(K) has all *n* torsion

Theorem (Lane, 2023)

All cyclic degree n extensions of K are of the form

K(x,y)/K

Where $Q = (x, y) \in C$ obeys $nQ = P \in C(K)$.

~	
(onnor	l nne
CONNOL	

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Comparison with Kummer Theory

• There are many parallels between this theorem and Kummer theory, and we list them here.

	Kummer Theory	Conics
Group	$(K \setminus \{0\}, imes)$	(C(K),+)
Must contain	all roots of unity	all <i>n</i> -torsion
"Division"	$\sqrt[n]{\alpha}$	Q where $nQ = P$
Adjoins	$\sqrt[n]{\alpha}$	coordinates of Q
Classifies	cyclic extensions	odd deg. cyclic extensions

• Moreover, their proofs use similar methods.

イロト イポト イヨト イヨト

Acknowledgements and Sources

- This project was done as part of a class on Galois cohomology run by Dr. All
- I'd like to thank Dr. All and Shyam Ravishankar for their feedback on this project
- Aden Shaw, Alexa Renner, Ben Lyons, Shyam Ravishankar, and Nathan Chen gave feedback on these slides.
- I used various lecture notes from courses I have taken, along with
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of Number Fields. Springer-Verlag, 2013.

3

(日)

Questions?

20 / 21

Connor Lane

Brief discussion of proof methods

- The main technical tool of this proof is Galois cohomology.
- Let \overline{K} be the separable closure of K. We have this exact sequence:

$$0 \longrightarrow C(\bar{K})[n] \longrightarrow C(\bar{K}) \xrightarrow{[n]} C(\bar{K}) \longrightarrow 0$$

• Taking Gal (\bar{K}/K) -cohomology, we obtain via the long exact sequence

$$C(K) \stackrel{[n]}{\longrightarrow} C(K) \stackrel{\delta}{\longrightarrow} H^1(\bar{K}/K, C(\bar{K})[n]) \longrightarrow H^1(\bar{K}/K, C(\bar{K}))$$

This yields an injection

 $\delta: C(K)/nC(K) \to H^1(\bar{K}/K, C(\bar{K})[n]) \simeq \mathsf{Hom}_{\mathsf{cts}}(\mathsf{Gal}(\bar{K}/K), C(K)[n])$

• Analyzing $H^1(\bar{K}/K, C(\bar{K}))$, we can show this is an isomorphism when n is odd

イロト 不得下 イヨト イヨト 二日