Cyclic Field Extensions and Groups on Conics Rose-Hulman Undergraduate Mathematics Conference

Connor Lane

August 2, 2024

← ロ → → ← 何 →

- 4 重 8 - 4 重 8

 QQ

Connor Lane Connor Lane August 2, 2024 1/21

Outline

- **•** Introduction to field and Galois theory
- The group structure on a conic
- The main result

÷.

 2990

イロメス 御き スミメス ミメー

Fields and Field Exensions

"Definition" (field)

A field is a set K where you can reasonably talk about the operations $(+, -, \times, \div)$ and they have the properties you would expect.

• Some examples include \mathbb{R} , \mathbb{Q} , \mathbb{C} , $\mathbb{Z}/p\mathbb{Z}$

Definition (Field Extensions)

A field extension L/K is a pair of fields L, K such that $K \subseteq L$.

- Examples: \mathbb{C}/\mathbb{R} , \mathbb{R}/\mathbb{Q}
- For any field K , we can define $K(\alpha) = (a_0 + a_1\alpha + \ldots + a_n\alpha^n : a_i \in K).$

KOD KAP KED KED E VAA

Automorphisms and Galois Groups

Definition (Automorphism Group)

Let L be a field, then $Aut(L)$ is the set

$$
\{\sigma: L \to L | \sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta), \sigma(\alpha\beta) = \sigma(\alpha)\sigma(\beta), \sigma(1) \neq 0\}
$$

Definition (Galois Group)

For an extension of fields L/K , define

$$
\mathsf{Gal}(L/K)=\{\sigma\in\mathsf{Aut}(L):\sigma(k)=k\quad\forall k\in K\}
$$

- Example: $Gal(\mathbb{C}/\mathbb{R}) = \{id, c\}$ where $id(a + bi) = a + bi$ and $c(a + bi) = a - bi$.
- **•** Important fact: if $\sigma, \tau \in \text{Gal}(L/K)$, then $\sigma \circ \tau \in \text{Gal}(L/K)$.

Cyclic Extensions

Definition (Degree of an Extension)

The degree of an extension L/K is the dimension of L as a vector space over K, and is written $[L : K]$.

- Intuitively, you should think of the degree as the relative size of L compared to K.
- Example: $[\mathbb{C} : \mathbb{R}] = 2$

Definition (Cyclic Extension)

Let L/K be an extension of fields. L/K is called cyclic if there is some $\sigma\in\mathsf{Gal}(L/K)$ such that $\{\sigma^k\}=\mathsf{Gal}(L/K)$, and $|\mathsf{Gal}(L/K)|=[L:K].$

- Such a σ is called a generator.
- **•** Example: \mathbb{C}/\mathbb{R} is cyclic. $\sigma = c$ satisfies the definition.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

A More Complicated Example

Define $K = \mathbb{Q}(i)$, and $L = K(\sqrt[4]{2})$.

We have Gal(L/K) = {id, $\sigma_1, \sigma_2, \sigma_3$ }.

$$
id(a_0 + a_1\sqrt[4]{2} + a_2\sqrt[4]{4} + a_3\sqrt[4]{8}) = a_0 + a_1\sqrt[4]{2} + a_2\sqrt[4]{4} + a_3\sqrt[4]{8}
$$

\n
$$
\sigma_1(a_0 + a_1\sqrt[4]{2} + a_2\sqrt[4]{4} + a_3\sqrt[4]{8}) = a_0 + ia_1\sqrt[4]{2} - a_2\sqrt[4]{4} - ia_3\sqrt[4]{8}
$$

\n
$$
\sigma_2(a_0 + a_1\sqrt[4]{2} + a_2\sqrt[4]{4} + a_3\sqrt[4]{8}) = a_0 - a_1\sqrt[4]{2} + a_2\sqrt[4]{4} - a_3\sqrt[4]{8}
$$

\n
$$
\sigma_3(a_0 + a_1\sqrt[4]{2} + a_2\sqrt[4]{4} + a_3\sqrt[4]{8}) = a_0 - ia_1\sqrt[4]{2} - a_2\sqrt[4]{4} + ia_3\sqrt[4]{8}
$$

 σ_1 works as a generator: $\sigma_1^1 = \sigma_1$ $\sigma_1^2 = \sigma_2$, $\sigma_1^3 = \sigma_3$, $\sigma_1^4 = id$. • L/K is cyclic of degree 4.

 QQQ

イロト イ何 トイヨト イヨト ニヨ

Kummer Theory

• My work is primarily inspired by Kummer theory

Definition (Contains all nth roots of unity)

Let K be a field. K is said to contain all nth roots of unity if it contains n solutions to the polynomial $x^n - 1$.

Theorem (Kummer, 1840s)

Let K be a field that contains all nth roots of unity. Then all degree n cyclic extensions of K are given by

 $K(\sqrt[n]{\alpha})/K$

where $\alpha \in K$.

 200

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Points on a Curve

- An algebraic curve is two-variable polynomial equation of the form $C : p(x, y) = 0$
- Example: $C: x^2 y = 0$, is an algebraic curve.

Definition $(K$ points)

For a field K and algebraic curve $C : p(x, y) = 0$, we write

$$
C(K) := \{(x_0, y_0) \in K^2 : p(x_0, y_0) = 0\}
$$

The set $C(K)$ is called the K points of C.

We will primarily be interested in the curve C : $\alpha x^2+\beta y^2-1=0$

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

Example: The Circle

- When $K = \mathbb{R}$, we can visualize that K points of C via its graph.
- Example: $C: x^2 + y^2 1 = 0$ has the following $\mathbb R$ points.

э

 Ω

Adding points on a Circle

• There is a notion of "adding" points on a circle.

 299

Adding Points on a Circle: Another Way (1)

 \bullet The notion of "angle" is too specific to $\mathbb R$, so we want to find an alternative method of adding points

Adding Points on a Circle: Another Way (2)

Adding Points on a Circle: Another Way (3)

Why use lines?

- The advantage of lines is that they are more general.
- "The line between two points" is completely algebraic: it's the unique algebraic curve $\ell : ax + by + c = 0$ such that $P, Q \in \ell(K)$.
- "Parallel lines" is just that $\ell : ax + by + c = 0$ and $\ell': a'x + b'y + c' = 0$ obey $\frac{a}{b} = \frac{a'}{b'}$ $\overline{b'}$
- "The other intersection" is guarenteed to be well-defined by **Bézout's Theorem** from Algebraic Geometry
- Most remarkably: This generalizes to arbitrary curves $C: \alpha x^2 + \beta y^2 - 1 = 0$

KED KARD KED KED E VOOR

Adding points on a hyperbola

If we are on $C: x^2 - y^2 - 1 = 0$, the same process allows us to add points.

Some notation

Let K be a field and C : $\alpha x^2+\beta y^2-1=0$ be a conic with distinguished point O.

Definition

For $P \in C(K)$ and $n \in \mathbb{N}$, define

$$
nP := \underbrace{P + \cdots + P}_{n \text{ times}}
$$

We will need the following technical condition.

Definition (*n*-torsion of $C(K)$) $C(K)[n] := \{ P \in C(K) : nP = O \}$ We say $C(K)$ has all n-torsion if $|C(K)[n]| = n$. $(1 + 4)$ $(1 + 4)$ QQ

Connor Lane August 2, 2024 16 / 21 **Connor Lane** August 2, 2024 16 / 21

The Main Theorem

o Let:

- K be a field with char(K) $\neq 2$
- $n \in \mathbb{N}$ an odd integer with char $(K) \nmid n$
- $C: \alpha x^2 + \beta y^2 1 = 0$ a curve with distinguished point $O \in C(K)$
- $C(K)$ has all *n* torsion

Theorem (Lane, 2023)

All cyclic degree n extensions of K are of the form

 $K(x, y)/K$

Where $Q = (x, y) \in C$ obeys $nQ = P \in C(K)$.

Comparison with Kummer Theory

There are many parallels between this theorem and Kummer theory, and we list them here.

• Moreover, their proofs use similar methods.

G.

 Ω

イロト イ押 トイヨ トイヨ トー

Acknowledgements and Sources

- This project was done as part of a class on Galois cohomology run by Dr. All
- I'd like to thank Dr. All and Shyam Ravishankar for their feedback on this project
- Aden Shaw, Alexa Renner, Ben Lyons, Shyam Ravishankar, and Nathan Chen gave feedback on these slides.
- **I** used various lecture notes from courses I have taken, along with
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of Number Fields. Springer-Verlag, 2013.

D. Ω

K ロ ト K 何 ト K ヨ ト K ヨ ト

Questions?

Brief discussion of proof methods

- The main technical tool of this proof is Galois cohomology.
- Let \overline{K} be the separable closure of K. We have this exact sequence:

$$
0\longrightarrow \ C(\bar K)[n]\longrightarrow \ C(\bar K)\stackrel{[n]}\longrightarrow C(\bar K)\longrightarrow 0
$$

• Taking Gal(\overline{K}/K)-cohomology, we obtain via the long exact sequence

$$
C(K) \xrightarrow{\lbrack n \rbrack} C(K) \xrightarrow{\delta} H^{1}(\bar{K}/K, C(\bar{K})[n]) \longrightarrow H^{1}(\bar{K}/K, C(\bar{K}))
$$

• This yields an injection

 $\delta: \mathcal{C}(\mathcal{K})/n\mathcal{C}(\mathcal{K}) \to H^1(\bar{\mathcal{K}}/\mathcal{K},\, \mathcal{C}(\bar{\mathcal{K}})[n]) \simeq \mathsf{Hom}_\mathsf{cts}(\mathsf{Gal}(\bar{\mathcal{K}}/\mathcal{K}),\, \mathcal{C}(\mathcal{K})[n])$

Analyzing $H^1(\bar{K}/K, \mathcal{C}(\bar{K}))$, we can show this is an isomorphism when n is odd

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q