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Fields and Field Exensions

“Definition” (field)

A field is a set K where you can reasonably talk about the operations
(+,−,×,÷) and they have the properties you would expect.

Some examples include R, Q, C, Z/pZ

Definition (Field Extensions)

A field extension L/K is a pair of fields L,K such that K ⊆ L.

Examples: C/R, R/Q
For any field K , we can define
K (α) = (a0 + a1α+ . . .+ anα

n : ai ∈ K ).
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Automorphisms and Galois Groups

Definition (Automorphism Group)

Let L be a field, then Aut(L) is the set

{σ : L → L|σ(α+ β) = σ(α) + σ(β), σ(αβ) = σ(α)σ(β), σ(1) ̸= 0}

Definition (Galois Group)

For an extension of fields L/K , define

Gal(L/K ) = {σ ∈ Aut(L) : σ(k) = k ∀k ∈ K}

Example: Gal(C/R) = {id, c} where id(a+ bi) = a+ bi and
c(a+ bi) = a− bi .

Important fact: if σ, τ ∈ Gal(L/K ), then σ ◦ τ ∈ Gal(L/K ).
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Cyclic Extensions

Definition (Degree of an Extension)

The degree of an extension L/K is the dimension of L as a vector space
over K , and is written [L : K ].

Intuitively, you should think of the degree as the relative size of L
compared to K .

Example: [C : R] = 2

Definition (Cyclic Extension)

Let L/K be an extension of fields. L/K is called cyclic if there is some
σ ∈ Gal(L/K ) such that {σk} = Gal(L/K ), and |Gal(L/K )| = [L : K ].

Such a σ is called a generator.

Example: C/R is cyclic. σ = c satisfies the definition.
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A More Complicated Example

Define K = Q(i), and L = K ( 4
√
2).

We have Gal(L/K ) = {id, σ1, σ2, σ3}.
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σ1 works as a generator: σ1
1 = σ1 σ2

1 = σ2, σ
3
1 = σ3, σ

4
1 = id.

L/K is cyclic of degree 4.
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Kummer Theory

My work is primarily inspired by Kummer theory

Definition (Contains all nth roots of unity)

Let K be a field. K is said to contain all nth roots of unity if it contains n
solutions to the polynomial xn − 1.

Theorem (Kummer, 1840s)

Let K be a field that contains all nth roots of unity. Then all degree n
cyclic extensions of K are given by

K ( n
√
α)/K

where α ∈ K.
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Points on a Curve

An algebraic curve is two-variable polynomial equation of the form
C : p(x , y) = 0

Example: C : x2 − y = 0, is an algebraic curve.

Definition (K points)

For a field K and algebraic curve C : p(x , y) = 0, we write

C (K ) := {(x0, y0) ∈ K 2 : p(x0, y0) = 0}

The set C (K ) is called the K points of C .

We will primarily be interested in the curve C : αx2 + βy2 − 1 = 0
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Example: The Circle

When K = R, we can visualize that K points of C via its graph.

Example: C : x2 + y2 − 1 = 0 has the following R points.
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Adding points on a Circle

There is a notion of ”adding” points on a circle.
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Adding Points on a Circle: Another Way (1)

The notion of “angle” is too specific to R, so we want to find an
alternative method of adding points
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Adding Points on a Circle: Another Way (2)
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Adding Points on a Circle: Another Way (3)
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Why use lines?

The advantage of lines is that they are more general.

“The line between two points” is completely algebraic: it’s the unique
algebraic curve ℓ : ax + by + c = 0 such that P,Q ∈ ℓ(K ).

“Parallel lines” is just that ℓ : ax + by + c = 0 and
ℓ′ : a′x + b′y + c ′ = 0 obey a

b = a′

b′

“The other intersection” is guarenteed to be well-defined by Bézout’s
Theorem from Algebraic Geometry

Most remarkably: This generalizes to arbitrary curves
C : αx2 + βy2 − 1 = 0

Connor Lane August 2, 2024 14 / 21



Adding points on a hyperbola

If we are on C : x2 − y2 − 1 = 0, the same process allows us to add points.
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Some notation

Let K be a field and C : αx2 + βy2 − 1 = 0 be a conic with
distinguished point O.

Definition

For P ∈ C (K ) and n ∈ N, define

nP := P + · · ·+ P︸ ︷︷ ︸
n times

We will need the following technical condition.

Definition (n-torsion of C (K ))

C (K )[n] := {P ∈ C (K ) : nP = O}

We say C (K ) has all n-torsion if |C (K )[n]| = n.
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The Main Theorem

Let:

K be a field with char(K ) ̸= 2
n ∈ N an odd integer with char(K ) ∤ n
C : αx2 + βy2 − 1 = 0 a curve with distinguished point O ∈ C (K )
C (K ) has all n torsion

Theorem (Lane, 2023)

All cyclic degree n extensions of K are of the form

K (x , y)/K

Where Q = (x , y) ∈ C obeys nQ = P ∈ C (K ).
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Comparison with Kummer Theory

There are many parallels between this theorem and Kummer theory,
and we list them here.

Kummer Theory Conics

Group (K \ {0},×) (C (K ),+)

Must contain all roots of unity all n-torsion

“Division” n
√
α Q where nQ = P

Adjoins n
√
α coordinates of Q

Classifies cyclic extensions odd deg. cyclic extensions

Moreover, their proofs use similar methods.
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Questions?
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Brief discussion of proof methods

The main technical tool of this proof is Galois cohomology.

Let K̄ be the separable closure of K . We have this exact sequence:

0 C (K̄ )[n] C (K̄ ) C (K̄ ) 0
[n]

Taking Gal(K̄/K )-cohomology, we obtain via the long exact sequence

C (K ) C (K ) H1(K̄/K ,C (K̄ )[n]) H1(K̄/K ,C (K̄ ))
[n] δ

This yields an injection

δ : C (K )/nC (K ) → H1(K̄/K ,C (K̄ )[n]) ≃ Homcts(Gal(K̄/K ),C (K )[n])

Analyzing H1(K̄/K ,C (K̄ )), we can show this is an isomorphism when
n is odd
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