Tate's Lemma

Connor Lane

August 2024

1 Introduction

The following is a byproduct of the attempts of Shyam Ravishankar and I to understand Cassels' proof of the Cassels-Tate pairing for Elliptic curves [\[Cas62\]](#page-1-0). One section that gave us particular trouble is the following Lemma from section 5 of the paper.

Lemma 1 ([\[Cas62\]](#page-1-0) Lemma 5.1) Let k be a number field, q a rational prime, and A a finite G_k -module that is isomorphic to $\mathbb{Z}/q\mathbb{Z} \oplus \mathbb{Z}/q\mathbb{Z}$ as an abelian group. Then $\text{III}^2(k, A) = 0$.

We found the proof in Cassels' paper slightly hard to follow. In particular, it has a [typo](https://mathoverflow.net/questions/469695/what-justifies-the-following-isomorphism-in-cassels-proof-of-the-cassels-tate-p) that took us a while to identify, and it does some slightly unusual things like identifying μ_p and $\mathbb{Z}/p\mathbb{Z}$. This motivated us to try and find an alternative proof of the fact, which we present here.

2 Proof of Tate's Lemma

We will want to use a lemma from [\[NSW13\]](#page-1-1), which we state the relevant case of for convenience.

Lemma 2 ([\[NSW13\]](#page-1-1) Thm. 9.1.9(iii)) Let A be a finite G_k -module and $k(A)$ the trivializing extension of A. If $[k(A)/k] = lcm{ [k(A)_p : k_p] : p \text{ is a prime of } k }$. Then $\text{III}^1(k, A) = 0$.

By Poitout-Tate duality [\[NSW13,](#page-1-1) Th. 8.6.7], it is sufficient to prove that $III^1(k, A) = 0$, since if A is isomorphic to $\mathbb{Z}/q\mathbb{Z} \oplus \mathbb{Z}/q\mathbb{Z}$ as an abelian group, then $A' = \text{hom}(A, \mu)$ is also isomorphic to $\mathbb{Z}/q\mathbb{Z} \oplus \mathbb{Z}/q\mathbb{Z}$ as an abelian group.

Proof of Lemma [1.](#page-0-0) Let $K(A)/K$ be the trivializing extension of A. We know $Gal(K(A)/A) \subseteq Aut(A)$ $GL_2(q)$. Fix a Sylow-q subgroup $G_K^{(q)}$ of G_K , and let $K^{(q)}$ be its fixed field. Let $K' = K_q^{(q)} \cap K(A)$ so that K' is a maximal q-free subextension of $K(A)/K$. We have maps res : $H^1(G_K, A) \to H^1(G_{K'}, A)$ and cor : $H^1(G_{K}, A) \to H^1(G_K, A)$, whose composition is cor \circ res = [K' : K], see [\[NSW13,](#page-1-1) Cor. 1.5.7].

Since A is q-torsion, $H^1(K, A)$ is also q-torsion and therefore multiplication by $[K': K]$ is an isomorphism, which implies that res is an injection.

Since $|GL_2(q)| = q(q-1)^2(q+1)$, we see that $Gal(K(A)/K') = q$ or 1. In either case, the group Gal($K(A)/K'$) is cyclic and therefore by Chebotarev density, there is a prime p of K' such that $[K(A)\mathfrak{g}$: $K'_{\mathfrak{p}} = [K(A):K']$. Therefore Lemma [2](#page-0-1) applies and the map

$$
H^1(K',A)\to \prod_{\mathfrak{P}}H^1(K'_{\mathfrak{P}},A)
$$

is injective. We have the following diagram of restriction maps

$$
\begin{array}{ccc}\nH^1(G_{K'}, A) & \longrightarrow & \prod_{\mathfrak{P}} H^1(G_{K'_{\mathfrak{P}}}, A) \\
\uparrow & & \uparrow \\
H^1(G_K, A) & \longrightarrow & \prod_{\mathfrak{P}} H^1(G_{K_{\mathfrak{P}}}, A)\n\end{array}
$$

Since the left and upper map are injective, the bottom map must also be injective and we obtain $III^1(K, A) = 0$. The case of $III²$ follows by Poitout-Tate duality as mentioned at the beginning of this section.

References

- [Cas62] J.W.S. Cassels. Arithmetic on curves of genus 1. iv. proof of the hauptvermutung. Journal für die reine und angewandte Mathematik, 1962(211):95–112, 1962.
- [NSW13] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of Number Fields. Comprehensive Studies in Mathematics. Springer-Verlag, 2013.